
Historical List of Summer Research Projects
About the Program
2021 Program Dates: June 1 - Aug 7, 2021*
*As of January 19, 2021, a confirmed decision was made that UW-Madison Summer Research Opportunity Programs will be held virtually. We will offer a full-time program with full benefits.
The application period will open November 1st, 2020 and close February 15, 2021.
Interested in a research career? Experience the richness of the research environment at a premier research university with this hands-on summer program. You'll get an invaluable glimpse of what graduate-level study and research careers might entail, while being surrounded by a supportive community of peers and stimulated by extra activities that help add meaning, encourage critical thinking, and allow you to explore and prepare for your post-graduate future.
Biological Interactions is designed for undergraduates who might not otherwise have this kind of research opportunity. There is no cost for the program and participants receive a stipend, summer housing, and travel to and from Madison. Underrepresented minority, low-income, and first-generation college students are strongly encouraged to apply, as are students from smaller institutions without broad research facilities.
Program participants live close to campus and perform full-time research for 10 weeks under the guidance of trained research mentors. Weekly professional development seminars allow participants to learn from each other's experiences and contextualize their research projects within the overarching theme of predicting phenotype. Additional events and activities build community, support career and graduate school exploration, and help students build useful skills, such as science writing. Students present their projects at a final symposium and write research reports to summarize their findings.
The Theme: Phenotype, Genotype, and the Environment
There is a seemingly endless amount of variation found in living organisms which results in many and varied phenotypes. This variation allows individuals to adapt and thrive in ever changing, complex environments. Science has made great gains in cataloging the building blocks of diversity through genome sequencing efforts; however, an organism's phenotype is not always what scientists would predict due to the interaction of the genome and the environment. The NSF-REU Biological Interactions Summer Research Program seeks to help diverse undergraduate students to explore biology through observation of phenotype and to investigate the influence of genotype, environment and interactions of the two on phenotype.
2021 Support and Benefits
- $6,000 Stipend
- $1,500 Food and Housing Allowance
- Access to (virtual) campus libraries
- Access to computers, wifi, and software as needed
Potential Research Projects
- Note, once we have chosen students to participate in the program we work to find a research group that is aligned with the student's research interest. The projects below are a good representation of the type of research in the program, but additional projects may be available.
* has participated in Research Mentor Training
Jean-Michel Ané*, Bacteriology The student will learn about mechanisms underlying the establishment of symbiotic associations between arbuscular mycorrhizal fungi and legumes and cereals. The student will do this by studying the role of a symbiosis receptor-like kinase KIN3 in Medicago truncatula (barrel medic) and Oryza sativa (rice). |
David Baum*, Botany The student will investigate chemical ecosystem theory by developing and implementing mathematical models of the origin of genetic polymerization systems. In so doing, the student will learn about adaptive evolution in prebiotic chemical systems and address whether these systems have a tendency to yield genetic encoding of catalytic polymers, such as peptides and RNAs. |
Corinna Burger*, Neurology The student will use a rodent model of Alzheimer's disease to investigate the role of environmental enrichment in ameliorating cognitive deficits associated with neurodegenerative disorders. The student will learn how to perform behavioral assays as well as how to use a viral delivery systems to study factors such as Tau that are implicated in cognitive impairment associated with Alzheimer’s disease. |
Briana Burton, Bacteriology The student will investigate the mechanisms that allow naturally transformable bacteria to take up DNA from the environment, a process that sometimes leads to the acquisition of new functions. The student’s project will involve performing a genetic selection screen for transformation mutants in Bacillus subtilis and molecularly and phenotypically characterizing the mutants. |
Claudio Gratton*, Entomology The student will address the question of whether modern cropping systems can be made more compatible with biodiversity conservation and also benefit agriculture. In particular, the student will investigate how diversification of cropping systems through addition of perennial or annual cover, conservation habitats, or regenerative practices such as grazing, influences the interactions between beneficial insects, such as bees and predatory beetles, and the services they provide to people. |
Audrey Gasch, Medical Genetics The student will exploit natural variation in genome sequence of wild yeast Saccharomyces cerevisiae to investigate mechanisms of stress tolerance. To accomplish this, the student will perform experiments using modern computational approaches in comparative and functional genomics as well as wet lab approaches. |
Melissa Harrison, Biomolecular Chemistry The student will use Drosophila as a model to study the relationship between transcription factor structure and function. Specifically, the student will use Cas9-mediated genome editing to mutate specific domains or residues within transcription factors and molecular and cellular approaches to investigate their necessity for embryonic development. |
Robert Landick*, Biochemistry The student will investigate the role that amino acids on the surface of bacterial RNA polymerases play in regulating transcription. The student will use synthetic biology approaches to identify variable surface-exposed amino acids of RNA polymerases from a diverse, unexplored evolutionary lineage of bacteria and in vitro transcription to study their regulatory activity. |
Hiroshi Maeda*, Botany The student will study how plants monitor amino acid status to maintain amino acid homeostasis. The student will use genetic mapping approaches to determine the molecular nature of previously identified mutants that suppress Arabidopsis dwarf phenotypes caused by partial amino acid-deficient mutants. |
Marisa Otegui*, Botany The student will use Arabidopsis as a model to investigate how plants regulate membrane trafficking and signaling. The student will use state-of-the-art imaging approaches to generate and characterize mutant lines to analyze the distribution of endomembrane and trafficking markers. |
Lauren Riters, Integrative Biology The student will study how emotions, motivation, and reward guide social behaviors, and in particular how they shape communication and social interactions in songbirds. To do this, the student will observe vocal-social interactions in songbirds in aviaries and measure gene expression in specific brain regions. |
John Svaren*, Comparative Biosciences The student will study the genetic networks involved in coordinating lipid synthesis during peripheral nerve myelination by Schwann cells. Specifically, the student will use metabolic and bioinformatic analyses of rat nerve bundles to investigate how epigenetic modifications control the transcription of genes during myelination. |
David Wassarman*, Medical Genetics The student will use Drosophila as a model to test the hypothesis that traumatic brain injury accelerates the normal aging process. The student will injure flies using a spring-based device and quantify morphological, physiological, and molecular markers of aging with the goal of determining if following traumatic brain injury, flies of a given chronological age have markers representative of an older age. |
Eligibility Requirements
- Strong career interest in biological science research
- Undergraduate student status for Fall 2021
- U.S. citizenship or permanent resident status
- Grade point average of at least 3.0 (see Frequently Asked Questions for more info)
Students who are African American, Hispanic, Native American, Southeast Asian, Native Alaskan or Native Pacific Islander OR who are from low-income homes OR who are the first in their family to attend college OR who attend small liberal arts institutions without broad research facilities are strongly encouraged to apply.
How To Apply
The application for the next year's session will be available from this web site starting November 1st, 2020. The "Apply" button at the top of this page will take you to the online application.
During the application process you will need to provide:
- Name and email address for at least one person (faculty member preferred) who will provide a letter of recommendation. Two letters of recommendation are allowed.
- Electronic version of your college transcript (scanned hard copies if electronic transcripts are not available); unofficial transcripts are acceptable.
- Three short personal essays (3900 character maximum per essay)
- How would your participation in a summer research program at UW-Madison contribute to your future goals and career plans?
- Which area(s) of research are of interest to you and why?
- Although previous research experience is not required to be considered for participation in our summer program, please describe any past research experience. This may include research experiences as part of a course if you do not have any other research experiences.
Selection and Placement
Selection and laboratory placement of students will take place in January, February, and March. Applicants who are not placed will be notified by the end of April.
Frequently Asked Questions
Why should I come to UW-Madison for a summer research program?
The University of Wisconsin-Madison has one of the strongest biological research communities in the U.S. It offers graduate training programs in over 40 areas of biological research. Participants report that this program has helped them determine whether graduate school is right for them, check out UW-Madison for grad school, and learn particular research techniques.
Housing costs are covered. What does that mean?
Due to the virtual nature of the 2021 program, participants will be given a housing and food stipend to off-set their living expenses during the program.
I noticed there are other summer research programs in the biological sciences at UW-Madison. Can I apply to more than one?
All of the biological sciences summer research programs at UW-Madison share one application. When you apply, you will rank your choice of programs. You can be considered for multiple programs with one application.
How many students do you accept?
Each year the program accepts 12-20 students into the program from a pool of about 350 applicants. The size of the 2021 program is contingent upon funding.
Is the program open to minority students only?
No. The National Science Foundation (NSF), has endorsed opening Research Experience for Undergraduate (REU) programs like Biological Interactions to non-minority students who attend small liberal arts colleges as well as to minority students. Both minority students from all universities and non-minority students from small universities (without broad research opportunities) are encouraged to apply.
What are the ethnicity/gender ratios for the program?
~87% underrepresented minority and ~70% women
My grade point average isn't quite 3.0. Should I apply anyway?
We occasionally accept promising students whose GPAs are less than 3.0. Be sure to tell us WHY you are a 'promising' student in your essay, and if possible, make sure your recommendation letters indicate that this experience would be worthwhile for you and that you'll perform successfully.
I'm a UW-Madison student. Can I apply to the program?
Yes. Preference may be given to members of underrepresented minority groups (African American, Hispanic, Native American, Southeast Asian, Native Alaskan or Native Pacific Islander), low-income and first-generation college students, and other underserved groups, depending on funding requirements and other considerations.
How are applications reviewed?
An initial screen of applicants is made by program staff. Files from the best-qualified applicants are forwarded to particular faculty mentors based on research interests expressed by students in their applications. Each mentor reviews the applications and determines which student is the best fit for their research. The progam then contacts the selected student to confirm their interest in a specific project and offer them a summer research position.
Can I enroll in summer school or have a job while participating in the program?
No, participants do research full-time (at least 40 hr/week). The idea is to enjoy an intensive research experience when you are freed from the schedules and obligations of coursework.
Leadership Team
The Biological Interactions program is under review by the National Science Foundation for funding for 2021.
- Amber Smith, PhD, PI
- David Wassarman, PhD, Co-PI
- Liza Chang, PhD, Program Coordinator
Contact us with any questions at ibs@biology.wisc.edu or (608) 265-0850
Amber R. Smith, PhD

Room 118C
445 Henry Mall
Madison, WI 53706
I earned my PhD in Plant Breeding Plant Genetics from UW-Madison and continued my education with a postdoctoral experience centered on developing first-year transition programs for biology students. After working at the University of Michigan in the Center for Research on Learning and Teaching, I joined the WISCIENCE staff as the Director of Mentor and Mentee Training.
I coordinate the Integrated Biological Sciences Summer Research Program, coordinate and instruct the Entering Mentoring and Entering Research courses, and oversee the research peer leadership students.
Outside of work, I love hanging out with family, cooking, and spending time outside.